3.2202 \(\int \frac {1}{(a+b \sqrt {x})^2} \, dx\)

Optimal. Leaf size=33 \[ \frac {2 a}{b^2 \left (a+b \sqrt {x}\right )}+\frac {2 \log \left (a+b \sqrt {x}\right )}{b^2} \]

[Out]

2*ln(a+b*x^(1/2))/b^2+2*a/b^2/(a+b*x^(1/2))

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 33, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {190, 43} \[ \frac {2 a}{b^2 \left (a+b \sqrt {x}\right )}+\frac {2 \log \left (a+b \sqrt {x}\right )}{b^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sqrt[x])^(-2),x]

[Out]

(2*a)/(b^2*(a + b*Sqrt[x])) + (2*Log[a + b*Sqrt[x]])/b^2

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 190

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(1/n - 1)*(a + b*x)^p, x], x, x^n], x] /
; FreeQ[{a, b, p}, x] && FractionQ[n] && IntegerQ[1/n]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b \sqrt {x}\right )^2} \, dx &=2 \operatorname {Subst}\left (\int \frac {x}{(a+b x)^2} \, dx,x,\sqrt {x}\right )\\ &=2 \operatorname {Subst}\left (\int \left (-\frac {a}{b (a+b x)^2}+\frac {1}{b (a+b x)}\right ) \, dx,x,\sqrt {x}\right )\\ &=\frac {2 a}{b^2 \left (a+b \sqrt {x}\right )}+\frac {2 \log \left (a+b \sqrt {x}\right )}{b^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 29, normalized size = 0.88 \[ \frac {2 \left (\frac {a}{a+b \sqrt {x}}+\log \left (a+b \sqrt {x}\right )\right )}{b^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sqrt[x])^(-2),x]

[Out]

(2*(a/(a + b*Sqrt[x]) + Log[a + b*Sqrt[x]]))/b^2

________________________________________________________________________________________

fricas [A]  time = 0.67, size = 50, normalized size = 1.52 \[ \frac {2 \, {\left (a b \sqrt {x} - a^{2} + {\left (b^{2} x - a^{2}\right )} \log \left (b \sqrt {x} + a\right )\right )}}{b^{4} x - a^{2} b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*x^(1/2))^2,x, algorithm="fricas")

[Out]

2*(a*b*sqrt(x) - a^2 + (b^2*x - a^2)*log(b*sqrt(x) + a))/(b^4*x - a^2*b^2)

________________________________________________________________________________________

giac [A]  time = 0.17, size = 30, normalized size = 0.91 \[ \frac {2 \, \log \left ({\left | b \sqrt {x} + a \right |}\right )}{b^{2}} + \frac {2 \, a}{{\left (b \sqrt {x} + a\right )} b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*x^(1/2))^2,x, algorithm="giac")

[Out]

2*log(abs(b*sqrt(x) + a))/b^2 + 2*a/((b*sqrt(x) + a)*b^2)

________________________________________________________________________________________

maple [B]  time = 0.02, size = 96, normalized size = 2.91 \[ -\frac {2 a^{2}}{\left (b^{2} x -a^{2}\right ) b^{2}}+\frac {a}{\left (b \sqrt {x}+a \right ) b^{2}}+\frac {a}{\left (b \sqrt {x}-a \right ) b^{2}}+\frac {\ln \left (b \sqrt {x}+a \right )}{b^{2}}-\frac {\ln \left (b \sqrt {x}-a \right )}{b^{2}}+\frac {\ln \left (b^{2} x -a^{2}\right )}{b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^(1/2)+a)^2,x)

[Out]

-2*a^2/(b^2*x-a^2)/b^2+ln(b^2*x-a^2)/b^2+a/b^2/(b*x^(1/2)+a)+ln(b*x^(1/2)+a)/b^2+a/b^2/(b*x^(1/2)-a)-1/b^2*ln(
b*x^(1/2)-a)

________________________________________________________________________________________

maxima [A]  time = 0.88, size = 29, normalized size = 0.88 \[ \frac {2 \, \log \left (b \sqrt {x} + a\right )}{b^{2}} + \frac {2 \, a}{{\left (b \sqrt {x} + a\right )} b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*x^(1/2))^2,x, algorithm="maxima")

[Out]

2*log(b*sqrt(x) + a)/b^2 + 2*a/((b*sqrt(x) + a)*b^2)

________________________________________________________________________________________

mupad [B]  time = 1.09, size = 29, normalized size = 0.88 \[ \frac {2\,\ln \left (a+b\,\sqrt {x}\right )}{b^2}+\frac {2\,a}{b^2\,\left (a+b\,\sqrt {x}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*x^(1/2))^2,x)

[Out]

(2*log(a + b*x^(1/2)))/b^2 + (2*a)/(b^2*(a + b*x^(1/2)))

________________________________________________________________________________________

sympy [A]  time = 0.63, size = 80, normalized size = 2.42 \[ \begin {cases} \frac {2 a \log {\left (\frac {a}{b} + \sqrt {x} \right )}}{a b^{2} + b^{3} \sqrt {x}} + \frac {2 a}{a b^{2} + b^{3} \sqrt {x}} + \frac {2 b \sqrt {x} \log {\left (\frac {a}{b} + \sqrt {x} \right )}}{a b^{2} + b^{3} \sqrt {x}} & \text {for}\: b \neq 0 \\\frac {x}{a^{2}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*x**(1/2))**2,x)

[Out]

Piecewise((2*a*log(a/b + sqrt(x))/(a*b**2 + b**3*sqrt(x)) + 2*a/(a*b**2 + b**3*sqrt(x)) + 2*b*sqrt(x)*log(a/b
+ sqrt(x))/(a*b**2 + b**3*sqrt(x)), Ne(b, 0)), (x/a**2, True))

________________________________________________________________________________________